
Predicting Crab Pre-Molt Size from Post-Molt Size 

with Simple Linear Regression 



Issues 
This study examines the application of a linear regression model to the pre- and post-

molt sizes of crabs; the goal of a linear regression model is to predict the pre-molt size using the 

post-molt size. We also go over data interpretation to assess whether or not crab post-molt sizes 

may accurately predict crab pre-molt sizes. There was some mistake in the pre-molt size 

forecasts that we had to quantify and assess to see whether it would make the predictions risky to 

utilize owing to inaccuracy while developing the ability to estimate pre-molt sizes from post 

molt sizes. We also consider if we can only forecast the pre-molt sizes more precisely in specific 

places where we have more data, given the restricted quantity of data provided. Following the 

completion of these procedures, we are left with our conclusions regarding the effectiveness and 

dependability of applying post-molt sizing to generate or predict crab pre-molt sizes. 

 

Findings 
Considering the extremely high r-squared values, the data we have seems to function reasonably well in 

forecasting pre molt sizes from post molt sizes. Given that the inaccuracy is typically higher in the lower 

ranges of post molt sizes, care should be used if using this model to forecast pre molt sizes. 
If wanting to improve this prediction model, more data on crabs molting sizes containing post 

molt sizes that are lower in the range could help improve the error of the prediction in the lower 

ranges, improving the model overall. 

 

Discussion 
We came to the conclusion that the model had more inaccuracy when forecasting in the 

lower ranges of post-molt sizes after completing general statistics on the crab molting data. This 

is related to our problem with the inadequate data and, thus, the poor accuracy across the post-

molt sizing ranges. We can also confirm that the model is not dangerous due to these 

inaccuracies, but instead, we give caution about the higher error when using post molt sizes in 

the lower ranges. Since there is less accuracy in the lower ranges than particularly in the higher 

ranges of post molt sizing, between 125-160 roughly, this is less error and better predictions 

when giving post molt sizes in this range. The higher accuracy is due to most of the post molt 

sizes being in this range, therefore, the prediction has a better understanding of what the output 

pre molt sizes should be. Due to the better accuracy in the higher parts of the post molt range it 

proves that post molt size data can indeed predict pre molt sizes of crabs well within some 

bounds of tolerance or error. 

 

Appendix A: Methods 
This paper uses a dataset of crab molt sizes, two variables, pre-molt size, and post molt 

size with the goal of using post molt sizes of crabs to predict pre-molt sizing. The next steps 

were to evaluate the data by obtaining summaries of each variable, post molt and pre molt, 



Min. 1
st
 Qu Median Mean 3

rd
 Qu Max. 

38.8 136.3 146.8 143.3 152.5 166.8 

 

Min. 1
st
 Qu Median Mean 3

rd
 Qu Max. 

31.1 120.1 132.3 128.5 139.2 155.1 

 

giving us minimum, 1
st
 quartile, median, mean, 3

rd
 quartile, and maximum. Next was to test 

whether the data for each variable followed a normal distribution; there are many ways to test 

this, including checking the kurtosis and skewness of each variable to see they are 3 and 0, 

respectively, or close to it. then by examining the density plots and histograms of each variable. 

The check for normality was finished after these three tests. We can see the difference or shift 

between the data by overlaying the density plots on top of each other and drawing two vertical 

lines for the mean of post-molt and pre-molt sizes. The linear model can then be constructed 

using a linear regression function in R, with post-molt sizing serving as our predictor for pre-

molt sizes. The Pearson's r-squared value of the model, which contributes to explaining how well 

the post-molt sizing contributes to predicting the pre-molt size, can be obtained by looking at the 

plot of the line generated by the function from R on top of the data in order to determine the 

model's fit. We then compute the difference between the original pre-molt values in the data and 

the ones that our model predicted from the post-molt sizes in order to examine residuals or errors 

in the prediction. The next step is to determine whether the residuals or errors have a normal 

distribution; This is accomplished by running a quantile or q-q plot in R, which draws a line 

through a scatter plot of all the residuals. The residuals would not be normal if none of the points 

were on the line. We measure the residuals' kurtosis and skewness to fully confirm this, and if 

they are equal to 3 and 0, respectively, then the residuals are normal; Aside from that, they may 

or may not be out of the ordinary. We plotted the density plot over the histogram and the 

histogram of the crab residuals to comprehend the kurtosis of the data; First, look to see if the 

residuals quickly reach a steep peak or if the histogram has a long tail. The value of kurtosis in 

the residuals could be influenced by these. Last but not least, we determine whether the residuals 

exhibit heteroscedastic behavior by plotting them on the y-axis and making the x-axis the 

predictor variable—in this case, the post-molt sizes. There is heteroscedasticity in the residuals if 

there are visible clusters, conical shapes, which indicate that there are more points as you go 

right on the x-axis, or a discernible pattern in the plotted residuals. A conclusion regarding the 

model's accuracy and potential applications can be reached after these statistics have been 

completed. 

Appendix B: Results 
First, we will start off with the summary of both variables in the data set,  

Post Molt Sizes: Pre-Molt Sizes: 

 

Kurtosis: 16.32761 10.87427 

Skewness: -2.589865 -2.016654 



The fact that the Kurtosis and Skewness do not correspond to 3 and 0 immediately indicates that neither of 

these variables follows a normal distribution. 

The following are two histograms alongside two thickness plots those on the left compare to the post shed 

variable and on the right relate to pre shed. These density and histogram plots, in addition to the Kurtosis and 

Skewness, demonstrate that the data do not follow a normal distribution. For comparison, a typical normal 

distribution histogram and density are provided below.) 
 

 

 

After looking at the example normal distribution you can see that the variables do not follow a 

normal distribution. 



Example Normal Distribution 

 
 

The next plot shows the difference between the data by overlaying the density plot for post-molt and pre-molt 

sizes and plotting a line for each variable's mean. On the molt change, the differences between the means are 

143.3 - 128.5 = 14.8. The mean of the corresponding variables is represented by the colored dotted lines, with 

the red line representing the pre-molt mean.) 

 
 

 
The post-molt data are plotted as the x-axis, and the pre-molt data are plotted as the y-axis. The linear 

regression function's line is then placed below the plot. A summary of significant values from the linear 

regression summary can be found on the right side.



Slope: 1.071465 

Intercept: -25.084758 

R-Squared: 0.9796 

or  

97.96% 

Pearson‘s 

R-Squared: 

0.9897423 

Almost 99% 

P-Value: < (less than) 

2.2e-16 

F-Statistic: 2.093e+04 

 

Summary 

 
A Q-Q or quantile plot, which is a test for normality among the residuals, is created from the 

residuals from the created linear model as shown below. The residuals have a normal 

distribution if all points are on the line. 

 

 
 

 
A histogram with a density plot overlayed and a summary of the residuals on the right side are provided to 

confirm this non-normality. The plot with the long tail may be affecting the residuals' kurtosis, which is 

otherwise close to normal but not normal.



Summary 
 

Min. 1
st
 Qu Median Mean 3

rd
 Qu Max. 

31.1 120.1 132.3 128.5 139.2 155.1 

 

 
 

Kurtosis: 10.73385 

Skewness: 1.075962 

 

 

 

 

 

 

 

 
 

Plotting the residuals against the predictor variable, post molt size—with post molt as the x-axis and residuals 

as the y-axis—is the final step. A plot to search for heteroscedasticity in the prediction model is shown here. 

This demonstrates that the model performs better at the higher end of the post-molt range. 
 

Appendix C: Data & Code 
Data: Pre-molt Sizes and Post-molt Sizes. 2 columns, 416 rows. 

 

Background for the data used can be found here: Stat Labs: Mathematical Statistics Through 

Applications Chapter 7, pgs. 139 – 150 



 

R-Studio Code: 

library(readxl) 

crab_molt_data <- read_excel("C:/Users/Sai Krishna chikkala /Desktop/MTH /crab_molt_data.xls") 

View(crab_molt_data) 

attach(crab_molt_data) 

 

library(moments) # To import the skewness and kurtosis function.  

#Now we have two variables in the Data Set  i.e. PostMolt and PreMolt and we have to describe these two 

variables 

#Let‘s start with Post-molt 

min (Post-molt)  

max (Post-molt) 

median(Post-molt)  

mean(Post-molt)  

sd(Post-molt)  

skewness (Post-molt)  

kurtosis (Post-molt) 

 

#Pre-molt 

 

min (Pre-molt)  

max (Pre-molt)  

median(Pre-molt) 

mean(Pre-molt)  

sd (Pre-molt)  

skewness (Pre-molt)  

kurtosis(Pre-molt) 

 

#Now we have to make a Probability Density Function(PDF) histogram for each variable #In the histogram 

plot , the Y axis will be represented by the frequency and we want the density function, So we will replace F 

with density function by typing ―freq=F‖ #Lets begin with PostMolt 

 

hist(PostMolt, freq=F, las=1,ylim=c(0,0.040),col=―red‖) 

 

#Now the histogram plot of Pre-molt 

 

hist (Pre-molt, freq=F,las=1,ylim=c(0,0.040),col =‗blue‘) 

 



#Let‘s find the density of the Pre-molt and PostMolt variables 

 

lines(density (PostMolt),col=―red‖,lwd=3) lines(density(Pre-molt),col=―blue‖,lwd=3) 

 

#Now we will overlap the two histograms in such a way that the difference in the distribution would be 

visible by naked eye 

 

hist (PostMolt, freq=F,ylim=c(0,0.040),main=―Overlapping between PostMolt and Pre-molt‖, 

xlabel=―Sizes‖, Col=rgb(1,0,0,0.5),las=1) hist(Pre-molt, freq=F,add=TRUE, col=rgb(0,0,1,0.5)) 

 

#Now we do the density plot for the overlapping of two variables 

 

plot(density (PostMolt),col=―red‖,lwd=3,main=―Density Plots of PostMolt& Pre-molt‖) lines(density(Pre-

molt),col=―blue‖,lwd=3) 

 

#In this step we will plot the dependent variable(Pre-molt) as a function of independent variable(PostMolt) 

with the help of Scatter Plot 

 

plot (PostMolt, Pre-molt, main= ―ScatterPlot‖) 

 

#Now we must plot the least square linear regression on the same plot as the data 

 

model <- lm (Pre-molt ~ PostMolt) summary(model) abline (model,col=―darkorange‖, lwd =3) 

 

#Now we calculate find the Pearsons r^2 regression 

 

results <- cor.test (Pre-molt, PostMolt, method= ―pearson‖) results 

 

#Let‘s do the descriptive statistics for the residuals  

 

residuals <- model$residuals  

sapply (residuals, sum) 

 

#Plotting the residuals in the histogram plot 

 

hist (residuals, freq=F,las=1,col=―green‖ ,ylim=c(0,0.20)) 

 

#Plotting the density line for the residuals 

 



plot(density(residuals), col= ―green‖ ,lwd=3,ylim =c(0,0.20),main=―Density Plot of Residuals‖) 

lines(density(residuals),col=―green‖, lwd=3) 

 

#Quantile Plot of residuals to check the normality 

 

qqnorm (residuals, pch=1,frame=FALSE, main=―Quantile Plot of residuals‖)  

qqline (residuals, col= ―steelblue‖, lwd=2) 

 

#Performing Shapiro-Walks Test 

 

shapiro.test((residuals)) 

 

#Plot the residuals against the dependent variable (Pre-molt) 

 

plot (residuals, Pre-molt, main = ―ScatterPlot‖) 

r_model <- lm (Pre-molt ~residuals) summary(r_model) abline(r_model, col=―brown‖,lwd=3) 

plot(r_model) 

 
# After plotting residuals we can note that most points do indeed lie on the line 



# but, there are some points that do not lie on the line telling us that it is not 

# normal. 

 

 
# Looking at the Kurtosis and Skewness we can see the kurtosis is very high 

# for the residuals and for a normal distribution it would be 3 and the skewness 

# would be 0. So we can see that we definitely dont have a normal distribution on 

# our residuals. 

kurtosis(crab_residuals) # 10.73385 

skewness(crab_residuals) # 1.075962 

 
# We can see we have a pretty long tail on the residuals and the data is peaky 

# around the mean in the histogram which are probably the causes of such a high 

# kurtosis. 

hist(crab_residuals, col="steelblue", main="Crab Molting Data Residuals", probability=TRUE) 

lines(density(crab_residuals), lwd=2, col="black") 

 

 

 
# We are going to perform a Breusch-Pagan test to check for heteroscedastic 

# behavior in the Residuals. 

bptest(crabMolt_LinearModel) 

 
# Plotting the residuals against the dependent variable or predictor to look at 

# heteroscedasticity of our model. Even here in this plot we can see the heteroscedastic 

# behavior telling showing us the model will perform better around the the higher 

# ranges and worse for the lower ranges with the Post Molt data. 

plot(crabMoltData$Post.molt, crab_residuals, xlab="Post Molt", ylab="Crab Residuals", 

main="Heteroscedasticity Plot") 

 
# Due to the p-value is less than the alpha value (0.05) which means that the 

# residuals shows heteroscedastic behavior and reject homoscedasticity among 

# the residuals. The possible cause could be because at the lower end of the 

# model our prediction is worse given we have very minimal data there. 
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